Calculates the boundaries at each interim analysis, i.e. the number of events in the intervention group that would lead to a stopping of the trial based on a binomial exact test, assuming that the events should be equally distributed amont both groups. The indicated scenario (and all more extreme) would lead to a rejection of H0 (equal distribution) and a stopping for safety.

getHarmBound(
  nevents,
  alpha_test,
  pH0,
  maxevents = NULL,
  pH1 = NULL,
  rrH1 = NULL,
  orH1 = NULL,
  rdH1 = NULL,
  r0 = NULL,
  n = NULL
)

Arguments

nevents

vector with number of events (over both arms) at which an interim analysis is done

alpha_test

the nominal alpha level to use for each test

pH0

proportion of events in the intervention arm under the null hypothesis, typically based on randomization ratio (e.g. 0.5 for a 1:1 randomization)

maxevents

optional maximum number of events expected for the trial (over both arms), used to calculate the expected number of events

pH1

optional alternative, numeric vector, proportion of events in the intervention arm

rrH1

alternative specification of alternative as risk ratio (intervention / control)

orH1

alternative specification of alternative as risk ratio (intervention / control). Requires the control proportion (r0).

rdH1

alternative specification of alternative as risk difference (intervention - control). Requires the control proportion (r0) and the number of participants (n).

r0

risk in the control group. Required if the alternative is given as risk difference or odds ratio.

n

total number of participants. Required if the alternative is given as risk difference.

Value

a list with 3 data.frames: bounds, stopprob and opchar. bounds has a row for each interim analysis and columns for number of events (events), number of events in control and intervention group that would lead to a stop (events_intervention, events_control), and the nominal alpha for each test (alpha_test). stopprob has a row for each interim analysis and columns for number of events (events), the hypothesis (pH), the stopping probability (stop_prob), and the cumulative stopping probability (cum_stop_prob) opchar has a row for each hypothesis (null plus each alternative) and columns for the assumed proportion of events in the intervention group (p), the cumulative stopping probabilities (cum_stop_prob) and the expected total number of events (expected_events) for the null and each alternative.

Examples

getHarmBound(nevents=c(10,50,100), alpha_test=0.025, pH0=0.5)
#> $bounds
#>   events events_intervention events_control alpha_test
#> 1     10                   9              1      0.025
#> 2     50                  33             17      0.025
#> 3    100                  61             39      0.025
#> 
#> $stopprob
#> $stopprob$`0.5`
#>   events  pH hyp  stop_prob cum_stop_prob
#> 1     10 0.5  H0 0.01074219    0.01074219
#> 2     50 0.5  H0 0.01490030    0.02564249
#> 3    100 0.5  H0 0.01194192    0.03758441
#> 
#> 
#> $opchar
#>     p cum_stop_prob expected_events hyp
#> 1 0.5    0.03758441        98.28819  H0
#> 
#> attr(,"class")
#> [1] "harmbound" "list"     
#adding an alternative
getHarmBound(nevents=c(10,50,100), alpha_test=0.025, pH0=0.5, pH1=0.6)
#> $bounds
#>   events events_intervention events_control alpha_test
#> 1     10                   9              1      0.025
#> 2     50                  33             17      0.025
#> 3    100                  61             39      0.025
#> 
#> $stopprob
#> $stopprob$`0.5`
#>   events  pH hyp  stop_prob cum_stop_prob
#> 1     10 0.5  H0 0.01074219    0.01074219
#> 2     50 0.5  H0 0.01490030    0.02564249
#> 3    100 0.5  H0 0.01194192    0.03758441
#> 
#> $stopprob$`0.6`
#>   events  pH hyp stop_prob cum_stop_prob
#> 1     10 0.6  H1 0.0463574     0.0463574
#> 2     50 0.6  H1 0.2098108     0.2561682
#> 3    100 0.6  H1 0.2505214     0.5066895
#> 
#> 
#> $opchar
#>     p cum_stop_prob expected_events hyp
#> 1 0.5    0.03758441        98.28819  H0
#> 2 0.6    0.50668952        85.33730  H1
#> 
#> attr(,"class")
#> [1] "harmbound" "list"     
#assume that a total of 150 events might occur
getHarmBound(nevents=c(10,50,100), alpha_test=0.025, pH0=0.5, pH1=0.6, maxevents=150)
#> $bounds
#>   events events_intervention events_control alpha_test
#> 1     10                   9              1      0.025
#> 2     50                  33             17      0.025
#> 3    100                  61             39      0.025
#> 
#> $stopprob
#> $stopprob$`0.5`
#>   events  pH hyp  stop_prob cum_stop_prob
#> 1     10 0.5  H0 0.01074219    0.01074219
#> 2     50 0.5  H0 0.01490030    0.02564249
#> 3    100 0.5  H0 0.01194192    0.03758441
#> 
#> $stopprob$`0.6`
#>   events  pH hyp stop_prob cum_stop_prob
#> 1     10 0.6  H1 0.0463574     0.0463574
#> 2     50 0.6  H1 0.2098108     0.2561682
#> 3    100 0.6  H1 0.2505214     0.5066895
#> 
#> 
#> $opchar
#>     p cum_stop_prob expected_events hyp
#> 1 0.5    0.03758441        146.4090  H0
#> 2 0.6    0.50668952        110.0028  H1
#> 
#> attr(,"class")
#> [1] "harmbound" "list"     
#or several alternatives
getHarmBound(nevents=c(10,50,100), alpha_test=0.025, pH0=0.5,
pH1 = seq(0.6,0.8,by=0.05), maxevents=150)
#> $bounds
#>   events events_intervention events_control alpha_test
#> 1     10                   9              1      0.025
#> 2     50                  33             17      0.025
#> 3    100                  61             39      0.025
#> 
#> $stopprob
#> $stopprob$`0.5`
#>   events  pH hyp  stop_prob cum_stop_prob
#> 1     10 0.5  H0 0.01074219    0.01074219
#> 2     50 0.5  H0 0.01490030    0.02564249
#> 3    100 0.5  H0 0.01194192    0.03758441
#> 
#> $stopprob$`0.6`
#>   events  pH hyp stop_prob cum_stop_prob
#> 1     10 0.6  H1 0.0463574     0.0463574
#> 2     50 0.6  H1 0.2098108     0.2561682
#> 3    100 0.6  H1 0.2505214     0.5066895
#> 
#> $stopprob$`0.65`
#>   events   pH hyp  stop_prob cum_stop_prob
#> 1     10 0.65  H1 0.08595444    0.08595444
#> 2     50 0.65  H1 0.43634566    0.52230009
#> 3    100 0.65  H1 0.32449164    0.84679173
#> 
#> $stopprob$`0.7`
#>   events  pH hyp stop_prob cum_stop_prob
#> 1     10 0.7  H1 0.1493083     0.1493083
#> 2     50 0.7  H1 0.6414520     0.7907603
#> 3    100 0.7  H1 0.1910207     0.9817810
#> 
#> $stopprob$`0.75`
#>   events   pH hyp  stop_prob cum_stop_prob
#> 1     10 0.75  H1 0.24402523     0.2440252
#> 2     50 0.75  H1 0.70328355     0.9473088
#> 3    100 0.75  H1 0.05210513     0.9994139
#> 
#> $stopprob$`0.8`
#>   events  pH hyp   stop_prob cum_stop_prob
#> 1     10 0.8  H1 0.375809638     0.3758096
#> 2     50 0.8  H1 0.618228306     0.9940379
#> 3    100 0.8  H1 0.005959013     0.9999970
#> 
#> 
#> $opchar
#>      p cum_stop_prob expected_events hyp
#> 1 0.50    0.03758441       146.40897  H0
#> 2 0.60    0.50668952       110.00282  H1
#> 3 0.65    0.84679173        78.10723  H1
#> 4 0.70    0.98178099        55.40060  H1
#> 5 0.75    0.99941391        42.90286  H1
#> 6 0.80    0.99999696        35.26587  H1
#> 
#> attr(,"class")
#> [1] "harmbound" "list"     
#or as risk ratio
getHarmBound(nevents=c(10,50,100), alpha_test=0.025, pH0=0.5, rrH1=1.5, maxevents=150)
#> $bounds
#>   events events_intervention events_control alpha_test
#> 1     10                   9              1      0.025
#> 2     50                  33             17      0.025
#> 3    100                  61             39      0.025
#> 
#> $stopprob
#> $stopprob$`0.5`
#>   events  pH hyp  stop_prob cum_stop_prob
#> 1     10 0.5  H0 0.01074219    0.01074219
#> 2     50 0.5  H0 0.01490030    0.02564249
#> 3    100 0.5  H0 0.01194192    0.03758441
#> 
#> $stopprob$`0.6`
#>   events  pH hyp stop_prob cum_stop_prob
#> 1     10 0.6  H1 0.0463574     0.0463574
#> 2     50 0.6  H1 0.2098108     0.2561682
#> 3    100 0.6  H1 0.2505214     0.5066895
#> 
#> 
#> $opchar
#>     p  rr cum_stop_prob expected_events hyp
#> 1 0.5 1.0    0.03758441        146.4090  H0
#> 2 0.6 1.5    0.50668952        110.0028  H1
#> 
#> attr(,"class")
#> [1] "harmbound" "list"