Calculate the sample size from AUC, prevalence and confidence interval width or the expected confidence interval width from AUC, prevalence and sample size, following Hanley and McNeil (1982).
Value
Object of class "presize", a list of arguments (including the computed one) augmented with method and note elements.
Details
Sample size is derived by optimizing the difference between the difference
between the lower and upper limits of the confidence interval and
conf.width
.
References
Hanley, JA and McNeil, BJ (1982) The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 148, 29-36
Examples
# confidence interval width
N <- 500
prev <- .1
auc <- .65
(prec <- prec_auc(auc, prev, n = N))
#>
#> precision for AUC
#>
#> auc n prev n1 n2 lwr upr conf.width conf.level
#> 1 0.65 500 0.1 50 450 0.5639623 0.7360377 0.1720755 0.95
cwidth <- prec$conf.width
# sample size
prec_auc(auc, prev, conf.width = cwidth)
#>
#> sample size for AUC
#>
#> auc n prev n1 n2 lwr upr conf.width conf.level
#> 1 0.65 500 0.1 50 450 0.5639623 0.7360377 0.1720755 0.95