prec_kappa
returns the sample size or the precision for the provided Cohen's kappa coefficient.
Usage
prec_kappa(
kappa,
n = NULL,
raters = 2,
n_category = 2,
props,
conf.width = NULL,
conf.level = 0.95
)
Arguments
- kappa
expected value of Cohen's kappa.
- n
sample size.
- raters
number of raters (maximum of 6).
- n_category
number of categories of outcomes (maximum of 5).
- props
expected proportions of each outcome (should have length
n_category
).- conf.width
precision (the full width of the confidence interval).
- conf.level
confidence level.
Value
Object of class "presize", a list of arguments (including the computed one) augmented with method and note elements.
Details
This function wraps the FixedN
and CI
functions in the
kappaSize
package.
The FixedN
functions in kappaSize
return a one sided confidence
interval. The values that are passed to kappaSize
ensure that two-sided
confidence intervals are returned, although we assume that confidence intervals
are symmetrical.
Examples
# precision based on sample size
# two categories with proportions of 30 and 70\%, four raters
prec_kappa(kappa = .5, n = 200, raters = 4, n_category = 2, props = c(.3,.7))
#>
#> precision for Cohen's kappa
#>
#> kappa n lwr upr conf.width conf.level
#> 1 0.5 200 0.425 0.575 0.15 0.95
# sample size to get a given precision
prec_kappa(kappa = .5, conf.width = .15, raters = 4, n_category = 2,
props = c(.3,.7))
#>
#> sample size for Cohen's kappa
#>
#> kappa n lwr upr conf.width conf.level
#> 1 0.5 198 0.425 0.575 0.15 0.95
# as above, but with two scenarios for kappa
prec_kappa(kappa = c(.5, .75), conf.width = .15, raters = 4, n_category = 2,
props = c(.3,.7))
#>
#> sample size for Cohen's kappa
#>
#> kappa n lwr upr conf.width conf.level
#> 1 0.50 198 0.425 0.575 0.15 0.95
#> 2 0.75 155 0.675 0.825 0.15 0.95
prec_kappa(kappa = c(.5, .75), conf.width = c(.15, 0.3), raters = 4,
n_category = 2, props = c(.3,.7))
#>
#> sample size for Cohen's kappa
#>
#> kappa n lwr upr conf.width conf.level
#> 1 0.50 198 0.425 0.575 0.15 0.95
#> 2 0.75 44 0.600 0.900 0.30 0.95