prec_riskdiff
returns the risk difference and the sample size or the
precision for the provided proportions.
Usage
prec_riskdiff(
p1,
p2,
n1 = NULL,
conf.width = NULL,
r = 1,
conf.level = 0.95,
method = c("newcombe", "mn", "ac", "wald"),
...
)
Arguments
- p1
risk among exposed.
- p2
risk among unexposed.
- n1
number of patients in exposed group.
- conf.width
precision (the full width of the confidence interval).
- r
allocation ratio (relative size of exposed and unexposed cohort (
n1
/n2
)).- conf.level
confidence level.
- method
Exactly one of
newcombe
(default),mn
(Miettinen-Nurminen),ac
(Agresti-Caffo),wald
. Methods can be abbreviated.- ...
other options to uniroot (e.g.
tol
)
Details
Exactly one of the parameters n1
or conf.width
must be passed as NULL,
and that parameter is determined from the other.
Newcombe (newcombe
) proposed a confidence interval based on the wilson
score method for the single proportion (see prec_prop). The confidence
interval without continuity correction is implemented from equation 10 in
Newcombe (1998).
Miettinen-Nurminen (mn
) provide a closed from equation for the
restricted maximum likelihood estimate . The implementation is based on
code provided by Yongyi Min on
https://users.stat.ufl.edu/~aa/cda/R/two-sample/R2/index.html.
Agresti-Caffo (ac
) confidence interval is based on the Wald confidence
interval, adding 1 success to each cell of the 2 x 2 table (see Agresti and
Caffo 2000).
uniroot
is used to solve n for the newcombe, ac, and mn
method.
References
Agresti A (2003) Categorical Data Analysis, Second Edition, Wiley Series in Probability and Statistics, doi:10.1002/0471249688 .
Agresti A and Caffo B (2000) Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures, The American Statistician, 54(4):280-288.
Miettinen O and Nurminen M (1985) Comparative analysis of two rates, Statistics in Medicine, 4:213-226.
Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods, Statistics in Medicine, 17:873-890.
Fagerland MW, Lydersen S, and Laake P (2015). Recommended confidence intervals for two independent binomial proportions, Statistical methods in medical research 24(2):224-254.
Examples
# proportions of 40 and 30\%, 50 participants, how wide is the CI?
prec_riskdiff(p1 = .4, p2 = .3, n1 = 50)
#> Warning: more than one method was chosen, 'newcombe' will be used
#>
#> precision for a risk difference with newcombe confidence interval
#>
#> p1 p2 n1 n2 ntot r delta lwr upr conf.width conf.level
#> 1 0.4 0.3 50 50 100 1 0.1 -0.08510109 0.2759788 0.3610798 0.95
# proportions of 40 and 30\%, 50 participants, how many participants for a CI 0.2 wide?
prec_riskdiff(p1 = .4, p2 = .3, conf.width = .2)
#> Warning: more than one method was chosen, 'newcombe' will be used
#>
#> sample size for a risk difference with newcombe confidence interval
#>
#> p1 p2 n1 n2 ntot r delta lwr upr conf.width
#> 1 0.4 0.3 169.8394 169.8394 339.6787 1 0.1 -0.001408915 0.1985911 0.2
#> conf.level
#> 1 0.95
# Validate Newcombe (1998)
prec_riskdiff(p1 = 56/70, p2 = 48/80, n1 = 70, r = 70/80, met = "newcombe") # Table IIa
#>
#> precision for a risk difference with newcombe confidence interval
#>
#> p1 p2 n1 n2 ntot r delta lwr upr conf.width conf.level
#> 1 0.8 0.6 70 80 150 0.875 0.2 0.05243147 0.3338727 0.2814412 0.95
prec_riskdiff(p1 = 10/10, p2 = 0/10, n1 = 10, met = "newcombe") # Table IIh
#>
#> precision for a risk difference with newcombe confidence interval
#>
#> p1 p2 n1 n2 ntot r delta lwr upr conf.width conf.level
#> 1 1 0 10 10 20 1 1 0.6075094 1 0.3924906 0.95
# multiple scenarios
prec_riskdiff(p1 = c(56/70, 9/10, 6/7, 5/56),
p2 = c(48/80, 3/10, 2/7, 0/29),
n1 = c(70, 10, 7, 56),
r = c(70/80, 1, 1, 56/29),
method = "wald")
#>
#> precision for a risk difference with wald confidence interval
#>
#> p1 p2 n1 n2 ntot r delta lwr upr
#> 1 0.80000000 0.6000000 70 80 150 0.875000 0.20000000 0.05750490 0.3424951
#> 2 0.90000000 0.3000000 10 10 20 1.000000 0.60000000 0.26052428 0.9394757
#> 3 0.85714286 0.2857143 7 7 14 1.000000 0.57142857 0.14811614 0.9947410
#> 4 0.08928571 0.0000000 56 29 85 1.931034 0.08928571 0.01460024 0.1639712
#> conf.width conf.level
#> 1 0.2849902 0.95
#> 2 0.6789514 0.95
#> 3 0.8466249 0.95
#> 4 0.1493709 0.95